Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learn from Human Teams: a Probabilistic Solution to Real-Time Collaborative Robot Handling with Dynamic Gesture Commands (2112.06020v1)

Published 11 Dec 2021 in cs.RO and cs.HC

Abstract: We study real-time collaborative robot (cobot) handling, where the cobot maneuvers a workpiece under human commands. This is useful when it is risky for humans to directly handle the workpiece. However, it is hard to make the cobot both easy to command and flexible in possible operations. In this work, we propose a Real-Time Collaborative Robot Handling (RTCoHand) framework that allows the control of cobot via user-customized dynamic gestures. This is hard due to variations among users, human motion uncertainties, and noisy human input. We model the task as a probabilistic generative process, referred to as Conditional Collaborative Handling Process (CCHP), and learn from human-human collaboration. We thoroughly evaluate the adaptability and robustness of CCHP and apply our approach to a real-time cobot handling task with Kinova Gen3 robot arm. We achieve seamless human-robot collaboration with both experienced and new users. Compared to classical controllers, RTCoHand allows significantly more complex maneuvers and lower user cognitive burden. It also eliminates the need for trial-and-error, rendering it advantageous in safety-critical tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rui Chen (310 papers)
  2. Alvin Shek (3 papers)
  3. Changliu Liu (134 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.