Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Simultaneous Localization and Mapping: Through the Lens of Nonlinear Optimization (2112.05921v4)

Published 11 Dec 2021 in eess.SY and cs.SY

Abstract: Simultaneous Localization and Mapping (SLAM) algorithms perform visual-inertial estimation via filtering or batch optimization methods. Empirical evidence suggests that filtering algorithms are computationally faster, while optimization methods are more accurate. This work presents an optimization-based framework that unifies these approaches, and allows users to flexibly implement different design choices, e.g., the number and types of variables maintained in the algorithm at each time. We prove that filtering methods correspond to specific design choices in our generalized framework. We then reformulate the Multi-State Constrained Kalman Filter (MSCKF), implement the reformulation on challenging image sequence datasets in simulation, and contrast its performance with that of sliding window based filters. Using these results, we explain the relative performance characteristics of these two classes of algorithms in the context of our algorithm. Finally, we illustrate that under different design choices, the empirical performance of our algorithm interpolates between those of state-of-the-art approaches.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.