Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Discriminative Channel Diversification Network for Image Classification (2112.05861v1)

Published 10 Dec 2021 in cs.CV

Abstract: Channel attention mechanisms in convolutional neural networks have been proven to be effective in various computer vision tasks. However, the performance improvement comes with additional model complexity and computation cost. In this paper, we propose a light-weight and effective attention module, called channel diversification block, to enhance the global context by establishing the channel relationship at the global level. Unlike other channel attention mechanisms, the proposed module focuses on the most discriminative features by giving more attention to the spatially distinguishable channels while taking account of the channel activation. Different from other attention models that plugin the module in between several intermediate layers, the proposed module is embedded at the end of the backbone networks, making it easy to implement. Extensive experiments on CIFAR-10, SVHN, and Tiny-ImageNet datasets demonstrate that the proposed module improves the performance of the baseline networks by a margin of 3% on average.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Krushi Patel (7 papers)
  2. Guanghui Wang (179 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.