Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity (2112.05604v1)

Published 10 Dec 2021 in cs.LG, math.OC, and stat.ML

Abstract: Gradient descent ascent (GDA), the simplest single-loop algorithm for nonconvex minimax optimization, is widely used in practical applications such as generative adversarial networks (GANs) and adversarial training. Albeit its desirable simplicity, recent work shows inferior convergence rates of GDA in theory even assuming strong concavity of the objective on one side. This paper establishes new convergence results for two alternative single-loop algorithms -- alternating GDA and smoothed GDA -- under the mild assumption that the objective satisfies the Polyak-Lojasiewicz (PL) condition about one variable. We prove that, to find an $\epsilon$-stationary point, (i) alternating GDA and its stochastic variant (without mini batch) respectively require $O(\kappa{2} \epsilon{-2})$ and $O(\kappa{4} \epsilon{-4})$ iterations, while (ii) smoothed GDA and its stochastic variant (without mini batch) respectively require $O(\kappa \epsilon{-2})$ and $O(\kappa{2} \epsilon{-4})$ iterations. The latter greatly improves over the vanilla GDA and gives the hitherto best known complexity results among single-loop algorithms under similar settings. We further showcase the empirical efficiency of these algorithms in training GANs and robust nonlinear regression.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Junchi Yang (11 papers)
  2. Antonio Orvieto (46 papers)
  3. Niao He (91 papers)
  4. Aurelien Lucchi (75 papers)
Citations (55)

Summary

We haven't generated a summary for this paper yet.