Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Copy, Right? A Testing Framework for Copyright Protection of Deep Learning Models (2112.05588v1)

Published 10 Dec 2021 in cs.CR

Abstract: Deep learning (DL) models, especially those large-scale and high-performance ones, can be very costly to train, demanding a great amount of data and computational resources. Unauthorized reproduction of DL models can lead to copyright infringement and cause huge economic losses to model owners. Existing copyright protection techniques are mostly based on watermarking, which embeds an owner-specified watermark into the model. While being able to provide exact ownership verification, these techniques are 1) invasive, as they need to tamper with the training process, which may affect the utility or introduce new security risks; 2) prone to adaptive attacks that attempt to remove the watermark; and 3) not robust to the emerging model extraction attacks. Latest fingerprinting work, though being non-invasive, also falls short when facing the diverse and ever-growing attack scenarios. In this paper, we propose a novel testing framework for DL copyright protection: DEEPJUDGE. DEEPJUDGE quantitatively tests the similarities between two DL models: a victim model and a suspect model. It leverages a diverse set of testing metrics and test case generation methods to produce a chain of supporting evidence to help determine whether a suspect model is a copy of the victim model. Advantages of DEEPJUDGE include: 1) non-invasive, as it works directly on the model and does not tamper with the training process; 2) efficient, as it only needs a small set of test cases and a quick scan of models; 3) flexible, as it can easily incorporate new metrics or generation methods to obtain more confident judgement; and 4) fairly robust to model extraction and adaptive attacks. We verify the effectiveness of DEEPJUDGE under typical copyright infringement scenarios, including model finetuning, pruning and extraction, via extensive experiments on both image and speech datasets with a variety of model architectures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (9)
  1. Jialuo Chen (6 papers)
  2. Jingyi Wang (105 papers)
  3. Tinglan Peng (1 paper)
  4. Youcheng Sun (40 papers)
  5. Peng Cheng (229 papers)
  6. Shouling Ji (136 papers)
  7. Xingjun Ma (114 papers)
  8. Bo Li (1107 papers)
  9. Dawn Song (229 papers)
Citations (54)