Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting Procedural Content Generation to Player Personas Through Evolution (2112.04406v1)

Published 7 Dec 2021 in cs.AI and cs.HC

Abstract: Automatically adapting game content to players opens new doors for game development. In this paper we propose an architecture using persona agents and experience metrics, which enables evolving procedurally generated levels tailored for particular player personas. Using our game, "Grave Rave", we demonstrate that this approach successfully adapts to four rule-based persona agents over three different experience metrics. Furthermore, the adaptation is shown to be specific in nature, meaning that the levels are persona-conscious, and not just general optimizations with regard to the selected metric.

Citations (5)

Summary

We haven't generated a summary for this paper yet.