2000 character limit reached
Partial Okounkov bodies and Duistermaat--Heckman measures of non-Archimedean metrics (2112.04290v2)
Published 8 Dec 2021 in math.AG, math.CV, and math.DG
Abstract: Let $X$ be a smooth projective variety. We construct partial Okounkov bodies associated to Hermitian pseudo-effective line bundles $(L,\phi)$ on $X$. We show that partial Okounkov bodies are universal invariants of the singularity of $\phi$. As an application, we generalize the theorem of Boucksom--Chen and construct Duistermaat--Heckman measures associated with finite energy metrics on the Berkovich analytification of an ample line bundle.
- “Geometry of higher rank valuations”, 2022 arXiv:2208.06237 [math.AG]
- “Growth of balls of holomorphic sections and energy at equilibrium” In Invent. Math. 181.2, 2010, pp. 337–394 DOI: 10.1007/s00222-010-0248-9
- Robert J. Berman and Bo Berndtsson “Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties” In Ann. Fac. Sci. Toulouse Math. (6) 22.4, 2013, pp. 649–711 DOI: 10.5802/afst.1386
- “Chern–Weil and Hilbert–Samuel formulae for singular hermitian line bundles”, 2021 arXiv:2112.09007 [math.AG]
- Robert J. Berman, Sébastien Boucksom and Mattias Jonsson “A variational approach to the Yau-Tian-Donaldson conjecture” In J. Amer. Math. Soc. 34.3, 2021, pp. 605–652 DOI: 10.1090/jams/964
- Robert Berman, Sébastien Boucksom and David Witt Nyström “Fekete points and convergence towards equilibrium measures on complex manifolds” In Acta Math. 207.1, 2011, pp. 1–27 DOI: 10.1007/s11511-011-0067-x
- “Okounkov bodies of filtered linear series” In Compos. Math. 147.4, 2011, pp. 1205–1229 DOI: 10.1112/S0010437X11005355
- “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension” In J. Algebraic Geom. 22.2, 2013, pp. 201–248 DOI: 10.1090/S1056-3911-2012-00574-8
- “Monge-Ampère equations in big cohomology classes” In Acta Math. 205.2, 2010, pp. 199–262 DOI: 10.1007/s11511-010-0054-7
- Vladimir G. Berkovich “Spectral theory and analytic geometry over non-Archimedean fields” 33, Mathematical Surveys and Monographs American Mathematical Society, Providence, RI, 1990, pp. x+169 DOI: 10.1090/surv/033
- S. Boucksom, C. Favre and M. Jonsson “Valuations and plurisubharmonic singularities” In Publications of the Research Institute for Mathematical Sciences 44.2, 2008, pp. 449–494
- Sébastien Boucksom, Charles Favre and Mattias Jonsson “Differentiability of volumes of divisors and a problem of Teissier” In J. Algebraic Geom. 18.2, 2009, pp. 279–308 DOI: 10.1090/S1056-3911-08-00490-6
- José Ignacio Burgos Gil, Patrice Philippon and Martín Sombra “Arithmetic geometry of toric varieties. Metrics, measures and heights” In Astérisque, 2014, pp. vi+222
- Sébastien Boucksom, Tomoyuki Hisamoto and Mattias Jonsson “Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs” In Ann. Inst. Fourier (Grenoble) 67.2, 2017, pp. 743–841 URL: http://aif.cedram.org/item?id=AIF_2017__67_2_743_0
- “Global pluripotential theory over a trivially valued field” In Ann. Fac. Sci. Toulouse Math. (6) 31.3, 2022, pp. 647–836 DOI: 10.5802/afst.170
- S. Boucksom “Cônes positifs des variétés complexes compactes”, 2002
- S. Boucksom “Higher dimensional Zariski decompositions”, 2002 arXiv:0204336 [math.AG]
- S. Boucksom “Singularities of plurisubharmonic functions and multiplier ideals”, http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf, 2017
- Junyan Cao “Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds” In Compos. Math. 150.11, 2014, pp. 1869–1902 DOI: 10.1112/S0010437X14007398
- “On the constant scalar curvature Kähler metrics, general automorphism group”, 2018 arXiv:1801.05907 [math.DG]
- “Newton-Okounkov bodies sprouting on the valuative tree” In Rend. Circ. Mat. Palermo (2) 66.2, 2017, pp. 161–194 DOI: 10.1007/s12215-016-0285-3
- “Asymptotic base loci via Okounkov bodies” In Adv. Math. 323, 2018, pp. 784–810 DOI: 10.1016/j.aim.2017.11.007
- “Okounkov bodies associated to pseudoeffective divisors” In J. Lond. Math. Soc. (2) 97.2, 2018, pp. 170–195 DOI: 10.1112/jlms.12107
- Tamás Darvas “Geometric pluripotential theory on Kähler manifolds” In Advances in complex geometry 735, Contemp. Math. Amer. Math. Soc., [Providence], RI, 2019, pp. 1–104 DOI: 10.1090/conm/735/14822
- Tamás Darvas, Eleonora Di Nezza and Chinh H. Lu “L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT metric geometry of big cohomology classes” In Ann. Inst. Fourier (Grenoble) 68.7, 2018, pp. 3053–3086 URL: http://aif.cedram.org/item?id=AIF_2018__68_7_3053_0
- Tamás Darvas, Eleonora Di Nezza and Chinh H. Lu “Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity” In Anal. PDE 11.8, 2018, pp. 2049–2087 DOI: 10.2140/apde.2018.11.2049
- Tamás Darvas, Eleonora Di Nezza and Chinh H. Lu “On the singularity type of full mass currents in big cohomology classes” In Compos. Math. 154.2, 2018, pp. 380–409 DOI: 10.1112/S0010437X1700759X
- Tamás Darvas, Eleonora Di Nezza and Chinh H. Lu “Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity” In Math. Ann. 379.1-2, 2021, pp. 95–132 DOI: 10.1007/s00208-019-01936-y
- Tamás Darvas, Eleonora Di Nezza and Hoang-Chinh Lu “The metric geometry of singularity types” In J. Reine Angew. Math. 771, 2021, pp. 137–170 DOI: 10.1515/crelle-2020-0019
- Jean-Pierre Demailly “Analytic methods in algebraic geometry” 1, Surveys of Modern Mathematics International Press, Somerville, MA; Higher Education Press, Beijing, 2012, pp. viii+231
- Jean-Pierre Demailly “On the cohomology of pseudoeffective line bundles” In Complex geometry and dynamics 10, Abel Symp. Springer, Cham, 2015, pp. 51–99
- Ya Deng “Transcendental Morse inequality and generalized Okounkov bodies” In Algebr. Geom. 4.2, 2017, pp. 177–202 DOI: 10.14231/AG-2017-009
- Tamás Darvas and Chinh H. Lu “Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry” In Geom. Topol. 24.4, 2020, pp. 1907–1967 DOI: 10.2140/gt.2020.24.1907
- Jean-Pierre Demailly, Thomas Peternell and Michael Schneider “Pseudo-effective line bundles on compact Kähler manifolds” In Internat. J. Math. 12.6, 2001, pp. 689–741 DOI: 10.1142/S0129167X01000861
- “Transcendental Okounkov bodies”, 2023 arXiv:2309.07584 [math.DG]
- “The volume of pseudoeffective line bundles and partial equilibrium” In Geometry & Topology, 2021 arXiv:2112.03827 [math.DG]
- “The closures of test configurations and algebraic singularity types” In Adv. Math. 397, 2022, pp. Paper No. 108198\bibrangessep56 DOI: 10.1016/j.aim.2022.108198
- “Foundations of rigid geometry. I”, EMS Monographs in Mathematics European Mathematical Society (EMS), Zürich, 2018, pp. xxxiv+829
- “Degenerate Complex Monge–Ampère Equations”, 2017
- Eiji Inoue “Entropies in μ𝜇\muitalic_μ-framework of canonical metrics and K-stability, II – Non-archimedean aspect: non-archimedean μ𝜇\muitalic_μ-entropy and μ𝜇\muitalic_μK-semistability”, 2022 arXiv:2202.12168 [math.AG]
- Shin-Yao Jow “Okounkov bodies and restricted volumes along very general curves” In Adv. Math. 223.4, 2010, pp. 1356–1371 DOI: 10.1016/j.aim.2009.09.015
- Kiumars Kaveh “Note on cohomology rings of spherical varieties and volume polynomial” In J. Lie Theory 21.2, 2011, pp. 263–283
- A.G. Khovanskiĭ “The Newton polytope, the Hilbert polynomial and sums of finite sets” In Funktsional. Anal. i Prilozhen. 26.4, 1992, pp. 57–63\bibrangessep96 DOI: 10.1007/BF01075048
- “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory” In Ann. of Math. (2) 176.2, 2012, pp. 925–978 DOI: 10.4007/annals.2012.176.2.5
- “Convex bodies associated to linear series” In Ann. Sci. Éc. Norm. Supér. (4) 42.5, 2009, pp. 783–835 DOI: 10.24033/asens.2109
- “Holomorphic Morse inequalities and Bergman kernels” 254, Progress in Mathematics Birkhäuser Verlag, Basel, 2007, pp. xiv+422
- Andrei Okounkov “Why would multiplicities be log-concave?” In The orbit method in geometry and physics (Marseille, 2000) 213, Progr. Math. Birkhäuser Boston, Boston, MA, 2003, pp. 329–347
- Andrei Okounkov “Brunn-Minkowski inequality for multiplicities” In Invent. Math. 125.3, 1996, pp. 405–411 DOI: 10.1007/s002220050081
- Julius Ross and David Witt Nyström “Analytic test configurations and geodesic rays” In J. Symplectic Geom. 12.1, 2014, pp. 125–169 DOI: 10.4310/JSG.2014.v12.n1.a5
- R. Schneider “Convex bodies: the Brunn–Minkowski theory” Cambridge university press, 2014
- David Witt Nyström “Test configurations and Okounkov bodies” In Compos. Math. 148.6, 2012, pp. 1736–1756 DOI: 10.1112/S0010437X12000358
- David Witt Nyström “Transforming metrics on a line bundle to the Okounkov body” In Ann. Sci. Éc. Norm. Supér. (4) 47.6, 2014, pp. 1111–1161 DOI: 10.24033/asens.2235
- David Witt Nyström “Monotonicity of non-pluripolar Monge-Ampère masses” In Indiana Univ. Math. J. 68.2, 2019, pp. 579–591 DOI: 10.1512/iumj.2019.68.7630
- Mingchen Xia “Non-pluripolar products on vector bundles and Chern–Weil formulae on mixed Shimura varieties”, 2022 arXiv:2210.15342 [math.AG]
- Mingchen Xia “Mabuchi geometry of big cohomology classes” In J. Reine Angew. Math. 798, 2023, pp. 261–292 DOI: 10.1515/crelle-2023-0019
- Mingchen Xia “Pluripotential-theoretic stability thresholds” In Int. Math. Res. Not. IMRN, 2023, pp. 12324–12382 DOI: 10.1093/imrn/rnac186
- V.P. Zaharjuta “Transfinite diameter, Čebyšev constants and capacity for a compactum in Cnsuperscript𝐶𝑛C^{n}italic_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT” In Mat. Sb. (N.S.) 96(138), 1975, pp. 374–389\bibrangessep503