Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Modeling of Effective and Functional Brain Connectivity using Hierarchical Vector Autoregressions (2112.04249v1)

Published 8 Dec 2021 in stat.AP

Abstract: Analysis of brain connectivity is important for understanding how information is processed by the brain. We propose a novel Bayesian vector autoregression (VAR) hierarchical model for analyzing brain connectivity in a resting-state fMRI data set with autism spectrum disorder (ASD) patients and healthy controls. Our approach models functional and effective connectivity simultaneously, which is new in the VAR literature for brain connectivity, and allows for both group- and single-subject inference as well as group comparisons. We combine analytical marginalization with Hamiltonian Monte Carlo (HMC) to obtain highly efficient posterior sampling. The results from more simplified covariance settings are, in general, overly optimistic about functional connectivity between regions compared to our results. In addition, our modeling of heterogeneous subject-specific covariance matrices is shown to give smaller differences in effective connectivity compared to models with a common covariance matrix to all subjects.

Summary

We haven't generated a summary for this paper yet.