Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aggregation of Pareto optimal models (2112.04161v1)

Published 8 Dec 2021 in econ.TH, math.ST, stat.ML, and stat.TH

Abstract: In statistical decision theory, a model is said to be Pareto optimal (or admissible) if no other model carries less risk for at least one state of nature while presenting no more risk for others. How can you rationally aggregate/combine a finite set of Pareto optimal models while preserving Pareto efficiency? This question is nontrivial because weighted model averaging does not, in general, preserve Pareto efficiency. This paper presents an answer in four logical steps: (1) A rational aggregation rule should preserve Pareto efficiency (2) Due to the complete class theorem, Pareto optimal models must be Bayesian, i.e., they minimize a risk where the true state of nature is averaged with respect to some prior. Therefore each Pareto optimal model can be associated with a prior, and Pareto efficiency can be maintained by aggregating Pareto optimal models through their priors. (3) A prior can be interpreted as a preference ranking over models: prior $\pi$ prefers model A over model B if the average risk of A is lower than the average risk of B. (4) A rational/consistent aggregation rule should preserve this preference ranking: If both priors $\pi$ and $\pi'$ prefer model A over model B, then the prior obtained by aggregating $\pi$ and $\pi'$ must also prefer A over B. Under these four steps, we show that all rational/consistent aggregation rules are as follows: Give each individual Pareto optimal model a weight, introduce a weak order/ranking over the set of Pareto optimal models, aggregate a finite set of models S as the model associated with the prior obtained as the weighted average of the priors of the highest-ranked models in S. This result shows that all rational/consistent aggregation rules must follow a generalization of hierarchical Bayesian modeling. Following our main result, we present applications to Kernel smoothing, time-depreciating models, and voting mechanisms.

Summary

We haven't generated a summary for this paper yet.