Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing spectral properties of topological insulators without artificial truncation or supercell approximation (2112.03942v1)

Published 7 Dec 2021 in math.NA, cond-mat.mes-hall, cs.NA, math-ph, math.MP, and math.SP

Abstract: Topological insulators (TIs) are renowned for their remarkable electronic properties: quantised bulk Hall and edge conductivities, and robust edge wave-packet propagation, even in the presence of material defects and disorder. Computations of these physical properties generally rely on artificial periodicity (the supercell approximation), or unphysical boundary conditions (artificial truncation). In this work, we build on recently developed methods for computing spectral properties of infinite-dimensional operators. We apply these techniques to develop efficient and accurate computational tools for computing the physical properties of TIs. These tools completely avoid such artificial restrictions and allow one to probe the spectral properties of the infinite-dimensional operator directly, even in the presence of material defects and disorder. Our methods permit computation of spectra, approximate eigenstates, spectral measures, spectral projections, transport properties, and conductances. Numerical examples are given for the Haldane model, and the techniques can be extended similarly to other TIs in two and three dimensions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.