Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Efficient Continuous Manifold Learning for Time Series Modeling (2112.03379v2)

Published 3 Dec 2021 in cs.LG and cs.CV

Abstract: Modeling non-Euclidean data is drawing extensive attention along with the unprecedented successes of deep neural networks in diverse fields. Particularly, a symmetric positive definite matrix is being actively studied in computer vision, signal processing, and medical image analysis, due to its ability to learn beneficial statistical representations. However, owing to its rigid constraints, it remains challenging to optimization problems and inefficient computational costs, especially, when incorporating it with a deep learning framework. In this paper, we propose a framework to exploit a diffeomorphism mapping between Riemannian manifolds and a Cholesky space, by which it becomes feasible not only to efficiently solve optimization problems but also to greatly reduce computation costs. Further, for dynamic modeling of time-series data, we devise a continuous manifold learning method by systematically integrating a manifold ordinary differential equation and a gated recurrent neural network. It is worth noting that due to the nice parameterization of matrices in a Cholesky space, training our proposed network equipped with Riemannian geometric metrics is straightforward. We demonstrate through experiments over regular and irregular time-series datasets that our proposed model can be efficiently and reliably trained and outperforms existing manifold methods and state-of-the-art methods in various time-series tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. X. Zhen, R. Chakraborty, N. Vogt, B. B. Bendlin, and V. Singh, “Dilated convolutional neural networks for sequential manifold-valued data,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 10 621–10 631.
  2. Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “FairMOT: On the fairness of detection and re-identification in multiple object tracking,” International Journal of Computer Vision, vol. 129, no. 11, pp. 3069–3087, 2021.
  3. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  4. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, vol. 30, 2017, pp. 5998–6008.
  5. H. Phan, O. Y. Chén, M. C. Tran, P. Koch, A. Mertins, and M. De Vos, “XSleepNet: Multi-view sequential model for automatic sleep staging,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
  6. W. Ko, E. Jeon, S. Jeong, and H.-I. Suk, “Multi-scale neural network for EEG representation learning in BCI,” IEEE Computational Intelligence Magazine, vol. 16, no. 2, pp. 31–45, 2021.
  7. Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks for multivariate time series with missing values,” Scientific Reports, vol. 8, no. 1, pp. 1–12, 2018.
  8. P. Schäfer and U. Leser, “Multivariate time series classification with WEASEL+ MUSE,” arXiv preprint arXiv:1711.11343, 2017.
  9. X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, “TapNet: Multivariate time series classification with attentional prototypical network,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 6845–6852.
  10. G. Li, B. Choi, J. Xu, S. S. Bhowmick, K.-P. Chun, and G. L. Wong, “ShapeNet: A shapelet-neural network approach for multivariate time series classification,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021, pp. 8375–8383.
  11. Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu, “TS2Vec: Towards universal representation of time series,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp. 8980–8987.
  12. Y. Rubanova, R. T. Chen, and D. K. Duvenaud, “Latent ordinary differential equations for irregularly-sampled time series,” in Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 5320–5330.
  13. E. De Brouwer, J. Simm, A. Arany, and Y. Moreau, “GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series,” in Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 7377–7388.
  14. I. D. Jordan, P. A. Sokół, and I. M. Park, “Gated recurrent units viewed through the lens of continuous time dynamical systems,” Frontiers in Computational Neuroscience, vol. 15, p. 678158, 2021.
  15. C. Yildiz, M. Heinonen, and H. Lahdesmaki, “ODE2VAE: Deep generative second order ODEs with Bayesian neural networks,” in Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 13 434–13 443.
  16. P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural controlled differential equations for irregular time series,” in Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 6696–6707.
  17. R. Chakraborty, C.-H. Yang, X. Zhen, M. Banerjee, D. Archer, D. Vaillancourt, V. Singh, and B. Vemuri, “A statistical recurrent model on the manifold of symmetric positive definite matrices,” in Advances in Neural Information Processing Systems, vol. 31, 2018, pp. 8897–8908.
  18. A. Lou, D. Lim, I. Katsman, L. Huang, Q. Jiang, S.-N. Lim, and C. De Sa, “Neural manifold ordinary differential equations,” in Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 17 548–17 558.
  19. L. Falorsi and P. Forré, “Neural ordinary differential equations on manifolds,” arXiv preprint arXiv:2006.06663, 2020.
  20. Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural networks for video classification,” in Proceedings of the 34th International Conference on Machine Learning.   PMLR, 2017, pp. 3891–3900.
  21. F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate LSTM-FCNs for time series classification,” IEEE Transactions on Neural Networks, vol. 116, pp. 237–245, 2019.
  22. J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, “Unsupervised scalable representation learning for multivariate time series,” in Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 4650–4661.
  23. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.
  24. G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A transformer-based framework for multivariate time series representation learning,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 2114–2124.
  25. J. Li, S. Wei, and W. Dai, “Combination of manifold learning and deep learning algorithms for mid-term electrical load forecasting,” IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 5, pp. 2584–2593, 2023.
  26. D. Ding, M. Zhang, F. Feng, Y. Huang, E. Jiang, and M. Yang, “Black-box adversarial attack on time series classification,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 6, 2023, pp. 7358–7368.
  27. X. Chen, J. Weng, W. Lu, J. Xu, and J. Weng, “Deep manifold learning combined with convolutional neural networks for action recognition,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 9, pp. 3938–3952, 2017.
  28. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “ShapeNet: An information-rich 3D model repository,” arXiv preprint arXiv:1512.03012, 2015.
  29. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.
  30. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
  31. M. Moakher, “A differential geometric approach to the geometric mean of symmetric positive-definite matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 3, pp. 735–747, 2005.
  32. S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi, “Kernel methods on the Riemannian manifold of symmetric positive definite matrices,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 73–80.
  33. A. Kendall and R. Cipolla, “Geometric loss functions for camera pose regression with deep learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5974–5983.
  34. Z. Huang and L. Van Gool, “A Riemannian network for SPD matrix learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017, pp. 2036–2042.
  35. Y.-J. Suh and B. H. Kim, “Riemannian embedding banks for common spatial patterns with EEG-based SPD neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 1, 2021, pp. 854–862.
  36. R. Chakraborty, J. Bouza, J. Manton, and B. C. Vemuri, “ManifoldNet: A deep neural network for manifold-valued data with applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 2, pp. 799–810, 2020.
  37. X. S. Nguyen, L. Brun, O. Lézoray, and S. Bougleux, “A neural network based on SPD manifold learning for skeleton-based hand gesture recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12 036–12 045.
  38. C. Chefd’Hotel, D. Tschumperlé, R. Deriche, and O. Faugeras, “Regularizing flows for constrained matrix-valued images,” Journal of Mathematical Imaging and Vision, vol. 20, no. 1, pp. 147–162, 2004.
  39. V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Geometric means in a novel vector space structure on symmetric positive-definite matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 29, no. 1, pp. 328–347, 2007.
  40. Z. Lin, “Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition,” SIAM Journal on Matrix Analysis and Applications, vol. 40, no. 4, pp. 1353–1370, 2019.
  41. Z. Gao, Y. Wu, Y. Jia, and M. Harandi, “Learning to optimize on SPD manifolds,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7700–7709.
  42. R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” in Advances in Neural Information Processing Systems, vol. 31, 2018, pp. 6572–6583.
  43. D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in Proceedings of the 32nd International Conference on Machine Learning.   PMLR, 2015, pp. 1530–1538.
  44. A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam, and E. Keogh, “The UEA multivariate time series classification archive, 2018,” arXiv preprint arXiv:1811.00075, 2018.
  45. J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance measures,” Data Mining and Knowledge Discovery, vol. 29, no. 3, pp. 565–592, 2015.
  46. A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall, “The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances,” Data Mining and Knowledge Discovery, vol. 35, no. 2, pp. 401–449, 2021.
  47. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
  48. A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.
  49. F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
  50. Y.-H. Chen and J.-T. Chien, “Continuous-time attention for sequential learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 8, 2021, pp. 7116–7124.
  51. L.-P. Xhonneux, M. Qu, and J. Tang, “Continuous graph neural networks,” in Proceedings of the 37th International Conference on Machine Learning.   PMLR, 2020, pp. 10 432–10 441.
  52. D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord, “Riemannian batch normalization for SPD neural networks,” in Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 15 489–15 500.
  53. X. Zhen, R. Chakraborty, L. Yang, and V. Singh, “Flow-based generative models for learning manifold to manifold mappings,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, 2021, pp. 11 042–11 052.
  54. M. Fréchet, “Les éléments aléatoires de nature quelconque dans un espace distancié,” in Annales de l’institut Henri Poincaré, vol. 10, no. 4, 1948, pp. 215–310.
  55. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on Machine Learning.   PMLR, 2015, pp. 448–456.
  56. H. Karcher, “Riemannian center of mass and mollifier smoothing,” Communications on Pure and Applied Mathematics, vol. 30, no. 5, pp. 509–541, 1977.
  57. Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero, “Shrinkage algorithms for MMSE covariance estimation,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5016–5029, 2010.
  58. Z. Dong, S. Jia, C. Zhang, M. Pei, and Y. Wu, “Deep manifold learning of symmetric positive definite matrices with application to face recognition,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017, pp. 4009–4015.
  59. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.
  60. E. Hairer, “Solving ordinary differential equations on manifolds,” in Lecture notes, University of Geneva, 2011.
  61. P. E. Crouch and R. Grossman, “Numerical integration of ordinary differential equations on manifolds,” Journal of Nonlinear Science, vol. 3, no. 1, pp. 1–33, 1993.
  62. A. Bielecki, “Estimation of the Euler method error on a Riemannian manifold,” Communications in Numerical Methods in Engineering, vol. 18, no. 11, pp. 757–763, 2002.
  63. K. Kim, J. Kim, M. Zaheer, J. Kim, F. Chazal, and L. Wasserman, “Pllay: Efficient topological layer based on persistent landscapes,” Advances in Neural Information Processing Systems, vol. 33, pp. 15 965–15 977, 2020.
  64. A. Lou, I. Katsman, Q. Jiang, S. Belongie, S.-N. Lim, and C. De Sa, “Differentiating through the Fréchet mean,” in Proceedings of the 37th International Conference on Machine Learning.   PMLR, 2020, pp. 6393–6403.
  65. J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos “in the wild”,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1996–2003.
  66. A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000.
  67. A. Rechtschaffen, “A manual for standardized terminology, techniques and scoring system for sleep stages in human subjects,” Brain Information Service, 1968.
  68. H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “Automatic sleep stage classification using single-channel EEG: Learning sequential features with attention-based recurrent neural networks,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2018, pp. 1452–1455.
  69. H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “Joint classification and prediction CNN framework for automatic sleep stage classification,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 5, pp. 1285–1296, 2018.
  70. A. Supratak, H. Dong, C. Wu, and Y. Guo, “DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 11, pp. 1998–2008, 2017.
  71. H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 3, pp. 400–410, 2019.
  72. A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
  73. M. Perslev, M. Jensen, S. Darkner, P. J. Jennum, and C. Igel, “U-time: A fully convolutional network for time series segmentation applied to sleep staging,” in Advances in Neural Information Processing Systems, vol. 32, 2019, pp. 4415–4426.
  74. H. Seo, S. Back, S. Lee, D. Park, T. Kim, and K. Lee, “Intra-and inter-epoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG,” Biomedical Signal Processing and Control, vol. 61, p. 102037, 2020.
  75. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  76. A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities improve neural network acoustic models,” in Proceedings of the 30th International Conference on Machine Learning, vol. 30.   Citeseer, 2013, p. 3.
  77. K. Yu and M. Salzmann, “Second-order convolutional neural networks,” arXiv preprint arXiv:1703.06817, 2017.
  78. H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “DNN filter bank improves 1-max pooling CNN for single-channel EEG automatic sleep stage classification,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2018, pp. 453–456.
  79. S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv preprint arXiv:1803.01271, 2018.
  80. J. Yoon, W. R. Zame, and M. van der Schaar, “Estimating missing data in temporal data streams using multi-directional recurrent neural networks,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 5, pp. 1477–1490, 2018.
  81. M. Nguyen, T. He, L. An, D. C. Alexander, J. Feng, B. T. Yeo, A. D. N. Initiative et al., “Predicting alzheimer’s disease progression using deep recurrent neural networks,” NeuroImage, vol. 222, p. 117203, 2020.
  82. M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia Medica, vol. 22, no. 3, pp. 276–282, 2012.
  83. Y. Yang and X. Liu, “A re-examination of text categorization methods,” in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, 1999, pp. 42–49.
  84. J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” The Journal of Machine Learning Research, vol. 7, no. 1, pp. 1–30, 2006.
  85. S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian Journal of Statistics, no. 2, pp. 65–70, 1979.
Citations (6)

Summary

We haven't generated a summary for this paper yet.