Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Deep differentiable reinforcement learning and optimal trading (2112.02944v2)

Published 6 Dec 2021 in q-fin.PM

Abstract: In many reinforcement learning applications, the underlying environment reward and transition functions are explicitly known differentiable functions. This enables us to use recent research which applies machine learning tools to stochastic control to find optimal action functions. In this paper, we define differentiable reinforcement learning as a particular case of this research. We find that incorporating deep learning in this framework leads to more accurate and stable solutions than those obtained from more generic actor critic algorithms. We apply this deep differentiable reinforcement learning (DDRL) algorithm to the problem of one asset optimal trading strategies in various environments where the market dynamics are known. Thanks to the stability of this method, we are able to efficiently find optimal strategies for complex multi-scale market models. We also extend these methods to simultaneously find optimal action functions for a wide range of environment parameters. This makes it applicable to real life financial signals and portfolio optimization where the expected return has multiple time scales. In the case of a slow and a fast alpha signal, we find that the optimal trading strategy consists in using the fast signal to time the trades associated to the slow signal.

Summary

We haven't generated a summary for this paper yet.