Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seeing Objects in dark with Continual Contrastive Learning (2112.02891v3)

Published 6 Dec 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Object Detection, a fundamental computer vision problem, has paramount importance in smart camera systems. However, a truly reliable camera system could be achieved if and only if the underlying object detection component is robust enough across varying imaging conditions (or domains), for instance, different times of the day, adverse weather conditions, etc. In an effort to achieving a reliable camera system, in this paper, we make an attempt to train such a robust detector. Unfortunately, to build a well-performing detector across varying imaging conditions, one would require labeled training images (often in large numbers) from a plethora of corner cases. As manually obtaining such a large labeled dataset may be infeasible, we suggest using synthetic images, to mimic different training image domains. We propose a novel, contrastive learning method to align the latent representations of a pair of real and synthetic images, to make the detector robust to the different domains. However, we found that merely contrasting the embeddings may lead to catastrophic forgetting of the information essential for object detection. Hence, we employ a continual learning based penalty, to alleviate the issue of forgetting, while contrasting the representations. We showcase that our proposed method outperforms a wide range of alternatives to address the extremely challenging, yet under-studied scenario of object detection at night-time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.