Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Active Learning: Sample-Efficient Training of Robust Deep Learning Models (2112.02542v1)

Published 5 Dec 2021 in cs.LG and cs.AI

Abstract: Active learning is an established technique to reduce the labeling cost to build high-quality machine learning models. A core component of active learning is the acquisition function that determines which data should be selected to annotate. State-of-the-art acquisition functions -- and more largely, active learning techniques -- have been designed to maximize the clean performance (e.g. accuracy) and have disregarded robustness, an important quality property that has received increasing attention. Active learning, therefore, produces models that are accurate but not robust. In this paper, we propose \emph{robust active learning}, an active learning process that integrates adversarial training -- the most established method to produce robust models. Via an empirical study on 11 acquisition functions, 4 datasets, 6 DNN architectures, and 15105 trained DNNs, we show that robust active learning can produce models with the robustness (accuracy on adversarial examples) ranging from 2.35\% to 63.85\%, whereas standard active learning systematically achieves negligible robustness (less than 0.20\%). Our study also reveals, however, that the acquisition functions that perform well on accuracy are worse than random sampling when it comes to robustness. We, therefore, examine the reasons behind this and devise a new acquisition function that targets both clean performance and robustness. Our acquisition function -- named density-based robust sampling with entropy (DRE) -- outperforms the other acquisition functions (including random) in terms of robustness by up to 24.40\% (3.84\% than random particularly), while remaining competitive on accuracy. Additionally, we prove that DRE is applicable as a test selection metric for model retraining and stands out from all compared functions by up to 8.21\% robustness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yuejun Guo (16 papers)
  2. Qiang Hu (149 papers)
  3. Maxime Cordy (61 papers)
  4. Mike Papadakis (64 papers)
  5. Yves Le Traon (83 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.