Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive label thresholding methods for online multi-label classification (2112.02301v1)

Published 4 Dec 2021 in cs.LG

Abstract: Existing online multi-label classification works cannot well handle the online label thresholding problem and lack the regret analysis for their online algorithms. This paper proposes a novel framework of adaptive label thresholding algorithms for online multi-label classification, with the aim to overcome the drawbacks of existing methods. The key feature of our framework is that both scoring and thresholding models are included as important components of the online multi-label classifier and are incorporated into one online optimization problem. Further, in order to establish the relationship between scoring and thresholding models, a novel multi-label classification loss function is derived, which measures to what an extent the multi-label classifier can distinguish between relevant labels and irrelevant ones for an incoming instance. Based on this new framework and loss function, we present a first-order linear algorithm and a second-order one, which both enjoy closed form update, but rely on different techniques for updating the multi-label classifier. Both algorithms are proved to achieve a sub-linear regret. Using Mercer kernels, our first-order algorithm has been extended to deal with nonlinear multi-label prediction tasks. Experiments show the advantage of our linear and nonlinear algorithms, in terms of various multi-label performance metrics.

Citations (8)

Summary

We haven't generated a summary for this paper yet.