Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Configuring Intelligent Reflecting Surface with Performance Guarantees: Blind Beamforming (2112.02285v2)

Published 4 Dec 2021 in cs.IT and math.IT

Abstract: This work gives a blind beamforming strategy for intelligent reflecting surface (IRS), aiming to boost the received signal-to-noise ratio (SNR) by coordinating phase shifts across reflective elements in the absence of channel information. While the existing methods of IRS beamforming typically first estimate channels and then optimize phase shifts, we propose a conditional sample mean based statistical approach that explores the wireless environment via random sampling without performing any channel estimation. Remarkably, the new method just requires a polynomial number of random samples to yield an SNR boost that is quadratic in the number of reflective elements, whereas the standard random-max sampling algorithm can only achieve a linear boost under the same condition. Moreover, we gain additional insight into blind beamforming by interpreting it as a least squares problem. Field tests demonstrate the significant advantages of the proposed blind beamforming algorithm over the benchmark algorithms in enhancing wireless transmission.

Citations (47)

Summary

We haven't generated a summary for this paper yet.