Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Low-loss 1-bit Quantization of User-item Representations for Top-K Recommendation (2112.01944v1)

Published 3 Dec 2021 in cs.IR

Abstract: Due to the promising advantages in space compression and inference acceleration, quantized representation learning for recommender systems has become an emerging research direction recently. As the target is to embed latent features in the discrete embedding space, developing quantization for user-item representations with a few low-precision integers confronts the challenge of high information loss, thus leading to unsatisfactory performance in Top-K recommendation. In this work, we study the problem of representation learning for recommendation with 1-bit quantization. We propose a model named Low-loss Quantized Graph Convolutional Network (L2Q-GCN). Different from previous work that plugs quantization as the final encoder of user-item embeddings, L2Q-GCN learns the quantized representations whilst capturing the structural information of user-item interaction graphs at different semantic levels. This achieves the substantial retention of intermediate interactive information, alleviating the feature smoothing issue for ranking caused by numerical quantization. To further improve the model performance, we also present an advanced solution named L2Q-GCN-anl with quantization approximation and annealing training strategy. We conduct extensive experiments on four benchmarks over Top-K recommendation task. The experimental results show that, with nearly 9x representation storage compression, L2Q-GCN-anl attains about 90~99% performance recovery compared to the state-of-the-art model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.