Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hybrid physics-informed neural network for nonlinear partial differential equation (2112.01696v1)

Published 3 Dec 2021 in math.NA and cs.NA

Abstract: The recently developed physics-informed machine learning has made great progress for solving nonlinear partial differential equations (PDEs), however, it may fail to provide reasonable approximations to the PDEs with discontinuous solutions. In this paper, we focus on the discrete time physics-informed neural network (PINN), and propose a hybrid PINN scheme for the nonlinear PDEs. In this approach, the local solution structures are classified as smooth and nonsmooth scales by introducing a discontinuity indicator, and then the automatic differentiation technique is employed for resolving smooth scales, while an improved weighted essentially non-oscillatory (WENO) scheme is adopted to capture discontinuities. We then test the present approach by considering the viscous and inviscid Burgers equations , and it is shown that compared with original discrete time PINN, the present hybrid approach has a better performance in approximating the discontinuous solution even at a relatively larger time step.

Citations (7)

Summary

We haven't generated a summary for this paper yet.