Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Neural Weight Step Video Compression (2112.01504v1)

Published 2 Dec 2021 in cs.CV and cs.GR

Abstract: A variety of compression methods based on encoding images as weights of a neural network have been recently proposed. Yet, the potential of similar approaches for video compression remains unexplored. In this work, we suggest a set of experiments for testing the feasibility of compressing video using two architectural paradigms, coordinate-based MLP (CbMLP) and convolutional network. Furthermore, we propose a novel technique of neural weight stepping, where subsequent frames of a video are encoded as low-entropy parameter updates. To assess the feasibility of the considered approaches, we will test the video compression performance on several high-resolution video datasets and compare against existing conventional and neural compression techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube