Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

ViF-SD2E: A Robust Weakly-Supervised Method for Neural Decoding (2112.01261v3)

Published 2 Dec 2021 in cs.NE and cs.AI

Abstract: Neural decoding plays a vital role in the interaction between the brain and the outside world. In this paper, we directly decode the movement track of a finger based on the neural signals of a macaque. Supervised regression methods may overfit to actual labels containing noise, and require a high labeling cost, while unsupervised approaches often have unsatisfactory accuracy. Besides, the spatial and temporal information is often ignored or not well exploited by those methods. This motivates us to propose a robust weakly-supervised method, called ViF-SD2E, for neural decoding. In particular, it consists of a space-division (SD) module and a exploration--exploitation (2E) strategy, to effectively exploit both the spatial information of the outside world and the temporal information of neural activity, where the SD2E output is analogized with the weak 0/1 vision-feedback (ViF) label for training. It is worth noting that the designed ViF-SD2E is based on a symmetric phenomenon between the unsupervised decoding trajectory and the real trajectory in previous observations, then a cognitive pattern of fuzzy (robust) interaction in the nervous system may be discovered by us. Extensive experiments demonstrate the effectiveness of our method, which can be sometimes comparable to supervised counterparts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube