Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the computational complexity of the Steiner $k$-eccentricity (2112.01140v1)

Published 2 Dec 2021 in math.CO, cs.CC, and cs.DM

Abstract: The Steiner $k$-eccentricity of a vertex $v$ of a graph $G$ is the maximum Steiner distance over all $k$-subsets of $V (G)$ which contain $v$. A linear time algorithm for calculating the Steiner $k$-eccentricity of a vertex on block graphs is presented. For general graphs, an $O(n{\nu(G)+1}(n(G) + m(G) + k))$ algorithm is designed, where $\nu(G)$ is the cyclomatic number of $G$. A linear algorithm for computing the Steiner $3$-eccentricities of all vertices of a tree is also presented which improves the quadratic algorithm from [Discrete Appl.\ Math.\ 304 (2021) 181--195].

Summary

We haven't generated a summary for this paper yet.