Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Lower Bounds For Convex Optimization For All Orders of Smoothness (2112.01118v1)

Published 2 Dec 2021 in math.OC, cs.LG, and quant-ph

Abstract: We study the complexity of optimizing highly smooth convex functions. For a positive integer $p$, we want to find an $\epsilon$-approximate minimum of a convex function $f$, given oracle access to the function and its first $p$ derivatives, assuming that the $p$th derivative of $f$ is Lipschitz. Recently, three independent research groups (Jiang et al., PLMR 2019; Gasnikov et al., PLMR 2019; Bubeck et al., PLMR 2019) developed a new algorithm that solves this problem with $\tilde{O}(1/\epsilon{\frac{2}{3p+1}})$ oracle calls for constant $p$. This is known to be optimal (up to log factors) for deterministic algorithms, but known lower bounds for randomized algorithms do not match this bound. We prove a new lower bound that matches this bound (up to log factors), and holds not only for randomized algorithms, but also for quantum algorithms.

Citations (11)

Summary

We haven't generated a summary for this paper yet.