Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survey Descent: A Multipoint Generalization of Gradient Descent for Nonsmooth Optimization (2111.15645v5)

Published 30 Nov 2021 in math.OC, cs.CG, cs.LG, cs.NA, and math.NA

Abstract: For strongly convex objectives that are smooth, the classical theory of gradient descent ensures linear convergence relative to the number of gradient evaluations. An analogous nonsmooth theory is challenging. Even when the objective is smooth at every iterate, the corresponding local models are unstable and the number of cutting planes invoked by traditional remedies is difficult to bound, leading to convergences guarantees that are sublinear relative to the cumulative number of gradient evaluations. We instead propose a multipoint generalization of the gradient descent iteration for local optimization. While designed with general objectives in mind, we are motivated by a ``max-of-smooth'' model that captures the subdifferential dimension at optimality. We prove linear convergence when the objective is itself max-of-smooth, and experiments suggest a more general phenomenon.

Citations (8)

Summary

We haven't generated a summary for this paper yet.