Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Auto-encoder with Neural Response (2111.15309v2)

Published 30 Nov 2021 in cs.LG

Abstract: Artificial neural network (ANN) is a versatile tool to study the neural representation in the ventral visual stream, and the knowledge in neuroscience in return inspires ANN models to improve performance in the task. However, it is still unclear how to merge these two directions into a unified framework. In this study, we propose an integrated framework called Deep Autoencoder with Neural Response (DAE-NR), which incorporates information from ANN and the visual cortex to achieve better image reconstruction performance and higher neural representation similarity between biological and artificial neurons. The same visual stimuli (i.e., natural images) are input to both the mice brain and DAE-NR. The encoder of DAE-NR jointly learns the dependencies from neural spike encoding and image reconstruction. For the neural spike encoding task, the features derived from a specific hidden layer of the encoder are transformed by a mapping function to predict the ground-truth neural response under the constraint of image reconstruction. Simultaneously, for the image reconstruction task, the latent representation obtained by the encoder is assigned to a decoder to restore the original image under the guidance of neural information. In DAE-NR, the learning process of encoder, mapping function and decoder are all implicitly constrained by these two tasks. Our experiments demonstrate that if and only if with the joint learning, DAE-NRs can improve the performance of visual image reconstruction and increase the representation similarity between biological neurons and artificial neurons. The DAE-NR offers a new perspective on the integration of computer vision and neuroscience.

Citations (6)

Summary

We haven't generated a summary for this paper yet.