Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepAL: Deep Active Learning in Python (2111.15258v1)

Published 30 Nov 2021 in cs.LG

Abstract: We present DeepAL, a Python library that implements several common strategies for active learning, with a particular emphasis on deep active learning. DeepAL provides a simple and unified framework based on PyTorch that allows users to easily load custom datasets, build custom data handlers, and design custom strategies without much modification of codes. DeepAL is open-source on Github and welcome any contribution.

Citations (16)

Summary

We haven't generated a summary for this paper yet.