Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Pruning Framework for Vision Transformers (2111.15127v1)

Published 30 Nov 2021 in cs.CV

Abstract: Recently, vision transformer (ViT) and its variants have achieved promising performances in various computer vision tasks. Yet the high computational costs and training data requirements of ViTs limit their application in resource-constrained settings. Model compression is an effective method to speed up deep learning models, but the research of compressing ViTs has been less explored. Many previous works concentrate on reducing the number of tokens. However, this line of attack breaks down the spatial structure of ViTs and is hard to be generalized into downstream tasks. In this paper, we design a unified framework for structural pruning of both ViTs and its variants, namely UP-ViTs. Our method focuses on pruning all ViTs components while maintaining the consistency of the model structure. Abundant experimental results show that our method can achieve high accuracy on compressed ViTs and variants, e.g., UP-DeiT-T achieves 75.79% accuracy on ImageNet, which outperforms the vanilla DeiT-T by 3.59% with the same computational cost. UP-PVTv2-B0 improves the accuracy of PVTv2-B0 by 4.83% for ImageNet classification. Meanwhile, UP-ViTs maintains the consistency of the token representation and gains consistent improvements on object detection tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hao Yu (195 papers)
  2. Jianxin Wu (82 papers)
Citations (47)