Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation For Medical MR Image Using Generative Adversarial Networks (2111.14297v1)

Published 29 Nov 2021 in cs.CV, cs.LG, and eess.IV

Abstract: Computer-assisted diagnosis (CAD) based on deep learning has become a crucial diagnostic technology in the medical industry, effectively improving diagnosis accuracy. However, the scarcity of brain tumor Magnetic Resonance (MR) image datasets causes the low performance of deep learning algorithms. The distribution of transformed images generated by traditional data augmentation (DA) intrinsically resembles the original ones, resulting in a limited performance in terms of generalization ability. This work improves Progressive Growing of GANs with a structural similarity loss function (PGGAN-SSIM) to solve image blurriness problems and model collapse. We also explore other GAN-based data augmentation to demonstrate the effectiveness of the proposed model. Our results show that PGGAN-SSIM successfully generates 256x256 realistic brain tumor MR images which fill the real image distribution uncovered by the original dataset. Furthermore, PGGAN-SSIM exceeds other GAN-based methods, achieving promising performance improvement in Frechet Inception Distance (FID) and Multi-scale Structural Similarity (MS-SSIM).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Panjian Huang (2 papers)
  2. Xu Liu (213 papers)
  3. Yongzhen Huang (23 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.