Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring Data Quality for Dataset Selection in Offline Reinforcement Learning (2111.13461v1)

Published 26 Nov 2021 in cs.LG

Abstract: Recently developed offline reinforcement learning algorithms have made it possible to learn policies directly from pre-collected datasets, giving rise to a new dilemma for practitioners: Since the performance the algorithms are able to deliver depends greatly on the dataset that is presented to them, practitioners need to pick the right dataset among the available ones. This problem has so far not been discussed in the corresponding literature. We discuss ideas how to select promising datasets and propose three very simple indicators: Estimated relative return improvement (ERI) and estimated action stochasticity (EAS), as well as a combination of the two (COI), and empirically show that despite their simplicity they can be very effectively used for dataset selection.

Citations (3)

Summary

We haven't generated a summary for this paper yet.