Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Killing spinors and hypersurfaces (2111.13202v3)

Published 25 Nov 2021 in math.DG

Abstract: We consider spin manifolds with an Einstein metric, either Riemannian or indefinite, for which there exists a Killing spinor. We describe the intrinsic geometry of nondegenerate hypersurfaces in terms of a PDE satisfied by a pair of induced spinors, akin to the generalized Killing spinor equation. Conversely, we prove an embedding result for real analytic pseudo-Riemannian manifolds carrying a pair of spinors satisfying this condition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. The Cauchy Problems for Einstein Metrics and Parallel Spinors. Communications in Mathematical Physics 320 (2013), 173–198.
  2. A class of Sasakian 5-manifolds. Transformation Groups 14, 3 (9 2009), 493–512.
  3. Bär, C. Real Killing spinors and holonomy. Communications in Mathematical Physics 154, 3 (6 1993), 509–521.
  4. Generalized cylinders in semi-Riemannian and spin geometry. Mathematische Zeitschrift 249, 3 (2005), 545–580.
  5. Baum, H. Complete Riemannian manifolds with imaginary Killing spinors. Annals of Global Analysis and Geometry 7, 3 (1 1989), 205–226.
  6. Twistor and Killing spinors on Riemannian manifolds. Seminarbericht, Humboldt-Universität zu Berlin, Sektion Mathematik 108 (1991).
  7. On the full holonomy group of Lorentzian manifolds. Mathematische Zeitschrift 277, 3-4 (8 2014), 797–828.
  8. Cauchy problems for Lorentzian manifolds with special holonomy. Differential Geometry and its Applications 45 (4 2016), 43–66.
  9. Bohle, C. Killing spinors on Lorentzian manifolds. Journal of Geometry and Physics 45 (2003), 285–308.
  10. Bryant, R. L. Non‐Embedding and Non‐Extension Results in Special Holonomy. In The Many Facets of Geometry. Oxford University Press, 7 2010, pp. 346–367.
  11. Conti, D. Embedding into manifolds with torsion. Mathematische Zeitschrift 268, 3-4 (8 2011), 725–751.
  12. Solvable Lie algebras are not that hypo. Transformation Groups 16, 1 (2011), 51–69.
  13. Calabi-Yau cones from contact reduction. Annals of Global Analysis and Geometry 38, 1 (6 2010), 93–118.
  14. Generalized Killing spinors in dimension 5. Transactions of the American Mathematical Society 11 (2007), 5319–5343.
  15. DeTurck, D. The Cauchy problem for Lorentz metrics with prescribed Ricci curvature. Compositio Mathematica 48 (1983), 327–349.
  16. Diatta, A. Left invariant contact structures on Lie groups. Differential Geometry and its Applications 26, 5 (2008), 544–552.
  17. Kaluza-Klein supergravity. Physics Reports 130, 1-2 (1 1986), 1–142.
  18. Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities. Journal of the London Mathematical Society 78, 3 (12 2008), 580–604.
  19. New G2 holonomy cones and exotic nearly Kaehler structures on the 6-sphere and the product of a pair of 3-spheres. Annals of Mathematics 185, 1 (1 2017), 59–130.
  20. Friedrich, T. Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Mathematische Nachrichten 97, 1 (1980), 117–146.
  21. Hitchin, N. Stable forms and special metrics. American Math. Soc. 288 (2001), 70–89.
  22. Koiso, N. Hypersurfaces of Einstein manifolds. Annales Scientifiques De L Ecole Normale Superieure 14 (1981), 433–443.
  23. Spin geometry, vol. 38 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1989.
  24. Lischewski, A. The Cauchy problem for parallel spinors as first-order symmetric hyperbolic system, 2015. arXiv:1503.04946.
  25. Morel, B. Surfaces in S^3 and H^3 via spinors. Séminaire de théorie spectrale et géométrie 23 (2005), 131–144.
  26. Parallel spinor flows on three-dimensional Cauchy hypersurfaces, 9 2021. arXiv:2109.13906.
  27. Parallel spinors on globally hyperbolic Lorentzian four-manifolds. Annals of Global Analysis and Geometry 61, 2 (3 2022), 253–292.
  28. On quadratic first integrals of the geodesic equations for type {22} spacetimes. Communications in Mathematical Physics 18, 4 (12 1970), 265–274.
  29. Wang, M. Y. Parallel spinors and parallel forms. Annals of Global Analysis and Geometry 7, 1 (1989), 59–68.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com