Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attribute-specific Control Units in StyleGAN for Fine-grained Image Manipulation (2111.13010v1)

Published 25 Nov 2021 in cs.CV

Abstract: Image manipulation with StyleGAN has been an increasing concern in recent years.Recent works have achieved tremendous success in analyzing several semantic latent spaces to edit the attributes of the generated images.However, due to the limited semantic and spatial manipulation precision in these latent spaces, the existing endeavors are defeated in fine-grained StyleGAN image manipulation, i.e., local attribute translation.To address this issue, we discover attribute-specific control units, which consist of multiple channels of feature maps and modulation styles. Specifically, we collaboratively manipulate the modulation style channels and feature maps in control units rather than individual ones to obtain the semantic and spatial disentangled controls. Furthermore, we propose a simple yet effective method to detect the attribute-specific control units. We move the modulation style along a specific sparse direction vector and replace the filter-wise styles used to compute the feature maps to manipulate these control units. We evaluate our proposed method in various face attribute manipulation tasks. Extensive qualitative and quantitative results demonstrate that our proposed method performs favorably against the state-of-the-art methods. The manipulation results of real images further show the effectiveness of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Rui Wang (997 papers)
  2. Jian Chen (258 papers)
  3. Gang Yu (114 papers)
  4. Li Sun (135 papers)
  5. Changqian Yu (28 papers)
  6. Changxin Gao (77 papers)
  7. Nong Sang (87 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.