Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

I'll be back: Examining Restored Accounts On Twitter (2111.12395v1)

Published 24 Nov 2021 in cs.SI

Abstract: Online social networks like Twitter actively monitor their platform to identify accounts that go against their rules. Twitter enforces account level moderation, i.e. suspension of a Twitter account in severe cases of platform abuse. A point of note is that these suspensions are sometimes temporary and even incorrect. Twitter provides a redressal mechanism to 'restore' suspended accounts. We refer to all suspended accounts who later have their suspension reversed as 'restored accounts'. In this paper, we release the firstever dataset and methodology 1 to identify restored accounts. We inspect account properties and tweets of these restored accounts to get key insights into the effects of suspension.We build a prediction model to classify an account into normal, suspended or restored. We use SHAP values to interpret this model and identify important features. SHAP (SHapley Additive exPlanations) is a method to explain individual predictions. We show that profile features like date of account creation and the ratio of retweets to total tweets are more important than content-based features like sentiment scores and Ekman emotion scores when it comes to classification of an account as normal, suspended or restored. We investigate restored accounts further in the pre-suspension and post-restoration phases. We see that the number of tweets per account drop by 53.95% in the post-restoration phase, signifying less 'spammy' behaviour after reversal of suspension. However, there was no substantial difference in the content of the tweets posted in the pre-suspension and post-restoration phases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.