Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-Term CSI-based Design for RIS-Aided Multiuser MISO Systems Exploiting Deep Reinforcement Learning (2111.12212v1)

Published 24 Nov 2021 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we study the transmission design for reconfigurable intelligent surface (RIS)-aided multiuser communication networks. Different from most of the existing contributions, we consider long-term CSI-based transmission design, where both the beamforming vectors at the base station (BS) and the phase shifts at the RIS are designed based on long-term CSI, which can significantly reduce the channel estimation overhead. Due to the lack of explicit ergodic data rate expression, we propose a novel deep deterministic policy gradient (DDPG) based algorithm to solve the optimization problem, which was trained by using the channel vectors generated in an offline manner. Simulation results demonstrate that the achievable net throughput is higher than that achieved by the conventional instantaneous-CSI based scheme when taking the channel estimation overhead into account.

Citations (15)

Summary

We haven't generated a summary for this paper yet.