Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In-field early disease recognition of potato late blight based on deep learning and proximal hyperspectral imaging (2111.12155v1)

Published 23 Nov 2021 in cs.CV

Abstract: Effective early detection of potato late blight (PLB) is an essential aspect of potato cultivation. However, it is a challenge to detect late blight at an early stage in fields with conventional imaging approaches because of the lack of visual cues displayed at the canopy level. Hyperspectral imaging can, capture spectral signals from a wide range of wavelengths also outside the visual wavelengths. In this context, we propose a deep learning classification architecture for hyperspectral images by combining 2D convolutional neural network (2D-CNN) and 3D-CNN with deep cooperative attention networks (PLB-2D-3D-A). First, 2D-CNN and 3D-CNN are used to extract rich spectral space features, and then the attention mechanism AttentionBlock and SE-ResNet are used to emphasize the salient features in the feature maps and increase the generalization ability of the model. The dataset is built with 15,360 images (64x64x204), cropped from 240 raw images captured in an experimental field with over 20 potato genotypes. The accuracy in the test dataset of 2000 images reached 0.739 in the full band and 0.790 in the specific bands (492nm, 519nm, 560nm, 592nm, 717nm and 765nm). This study shows an encouraging result for early detection of PLB with deep learning and proximal hyperspectral imaging.

Citations (4)

Summary

We haven't generated a summary for this paper yet.