Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifting 2D Human Pose to 3D with Domain Adapted 3D Body Concept (2111.11969v1)

Published 23 Nov 2021 in cs.CV

Abstract: Lifting the 2D human pose to the 3D pose is an important yet challenging task. Existing 3D pose estimation suffers from 1) the inherent ambiguity between the 2D and 3D data, and 2) the lack of well labeled 2D-3D pose pairs in the wild. Human beings are able to imagine the human 3D pose from a 2D image or a set of 2D body key-points with the least ambiguity, which should be attributed to the prior knowledge of the human body that we have acquired in our mind. Inspired by this, we propose a new framework that leverages the labeled 3D human poses to learn a 3D concept of the human body to reduce the ambiguity. To have consensus on the body concept from 2D pose, our key insight is to treat the 2D human pose and the 3D human pose as two different domains. By adapting the two domains, the body knowledge learned from 3D poses is applied to 2D poses and guides the 2D pose encoder to generate informative 3D "imagination" as embedding in pose lifting. Benefiting from the domain adaptation perspective, the proposed framework unifies the supervised and semi-supervised 3D pose estimation in a principled framework. Extensive experiments demonstrate that the proposed approach can achieve state-of-the-art performance on standard benchmarks. More importantly, it is validated that the explicitly learned 3D body concept effectively alleviates the 2D-3D ambiguity in 2D pose lifting, improves the generalization, and enables the network to exploit the abundant unlabeled 2D data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qiang Nie (25 papers)
  2. Ziwei Liu (368 papers)
  3. Yunhui Liu (41 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.