Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is this IoT Device Likely to be Secure? Risk Score Prediction for IoT Devices Using Gradient Boosting Machines (2111.11874v1)

Published 23 Nov 2021 in cs.CR and cs.LG

Abstract: Security risk assessment and prediction are critical for organisations deploying Internet of Things (IoT) devices. An absolute minimum requirement for enterprises is to verify the security risk of IoT devices for the reported vulnerabilities in the National Vulnerability Database (NVD). This paper proposes a novel risk prediction for IoT devices based on publicly available information about them. Our solution provides an easy and cost-efficient solution for enterprises of all sizes to predict the security risk of deploying new IoT devices. After an extensive analysis of the NVD records over the past eight years, we have created a unique, systematic, and balanced dataset for vulnerable IoT devices, including key technical features complemented with functional and descriptive features available from public resources. We then use machine learning classification models such as Gradient Boosting Decision Trees (GBDT) over this dataset and achieve 71% prediction accuracy in classifying the severity of device vulnerability score.

Citations (2)

Summary

We haven't generated a summary for this paper yet.