Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Learnable Structural Semantic Readout for Graph Classification (2111.11523v1)

Published 22 Nov 2021 in cs.LG and cs.AI

Abstract: With the great success of deep learning in various domains, graph neural networks (GNNs) also become a dominant approach to graph classification. By the help of a global readout operation that simply aggregates all node (or node-cluster) representations, existing GNN classifiers obtain a graph-level representation of an input graph and predict its class label using the representation. However, such global aggregation does not consider the structural information of each node, which results in information loss on the global structure. Particularly, it limits the discrimination power by enforcing the same weight parameters of the classifier for all the node representations; in practice, each of them contributes to target classes differently depending on its structural semantic. In this work, we propose structural semantic readout (SSRead) to summarize the node representations at the position-level, which allows to model the position-specific weight parameters for classification as well as to effectively capture the graph semantic relevant to the global structure. Given an input graph, SSRead aims to identify structurally-meaningful positions by using the semantic alignment between its nodes and structural prototypes, which encode the prototypical features of each position. The structural prototypes are optimized to minimize the alignment cost for all training graphs, while the other GNN parameters are trained to predict the class labels. Our experimental results demonstrate that SSRead significantly improves the classification performance and interpretability of GNN classifiers while being compatible with a variety of aggregation functions, GNN architectures, and learning frameworks.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.