Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning for Beam-Management: State-of-the-Art, Opportunities and Challenges (2111.11177v2)

Published 10 Nov 2021 in cs.IT and math.IT

Abstract: Benefiting from huge bandwidth resources, millimeter-wave (mmWave) communications provide one of the most promising technologies for next-generation wireless networks. To compensate for the high pathloss of mmWave signals, large-scale antenna arrays are required both at the base stations and user equipment to establish directional beamforming, where beam-management is adopted to acquire and track the optimal beam pair having the maximum received power. Naturally, narrow beams are required for achieving high beamforming gain, but they impose enormous training overhead and high sensitivity to blockages. As a remedy, deep learning (DL) may be harnessed for beam-management. First, the current state-of-the-art is reviewed, followed by the associated challenges and future research opportunities. We conclude by highlighting the associated DL design insights and novel beam-management mechanisms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.