Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Linearity and Double Descent in Catastrophic Overfitting (2111.10754v1)

Published 21 Nov 2021 in cs.LG

Abstract: Catastrophic overfitting is a phenomenon observed during Adversarial Training (AT) with the Fast Gradient Sign Method (FGSM) where the test robustness steeply declines over just one epoch in the training stage. Prior work has attributed this loss in robustness to a sharp decrease in $\textit{local linearity}$ of the neural network with respect to the input space, and has demonstrated that introducing a local linearity measure as a regularization term prevents catastrophic overfitting. Using a simple neural network architecture, we experimentally demonstrate that maintaining high local linearity might be $\textit{sufficient}$ to prevent catastrophic overfitting but is not $\textit{necessary.}$ Further, inspired by Parseval networks, we introduce a regularization term to AT with FGSM to make the weight matrices of the network orthogonal and study the connection between orthogonality of the network weights and local linearity. Lastly, we identify the $\textit{double descent}$ phenomenon during the adversarial training process.

Summary

We haven't generated a summary for this paper yet.