Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Sum-Rate of Cell-Free Massive MIMO with Expanded Compute-and-Forward (2111.10717v1)

Published 21 Nov 2021 in cs.IT, eess.SP, and math.IT

Abstract: Cell-free massive multiple-input multiple-output (MIMO) employs a large number of distributed access points (APs) to serve a small number of user equipments (UEs) via the same time/frequency resource. Due to the strong macro diversity gain, cell-free massive MIMO can considerably improve the achievable sum-rate compared to conventional cellular massive MIMO. However, the performance of cell-free massive MIMO is upper limited by inter-user interference (IUI) when employing simple maximum ratio combining (MRC) at receivers. To harness IUI, the expanded compute-and-forward (ECF) framework is adopted. In particular, we propose power control algorithms for the parallel computation and successive computation in the ECF framework, respectively, to exploit the performance gain and then improve the system performance. Furthermore, we propose an AP selection scheme and the application of different decoding orders for the successive computation. Finally, numerical results demonstrate that ECF frameworks outperform the conventional CF and MRC frameworks in terms of achievable sum-rate.

Citations (51)

Summary

We haven't generated a summary for this paper yet.