Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FAMINet: Learning Real-time Semi-supervised Video Object Segmentation with Steepest Optimized Optical Flow (2111.10531v1)

Published 20 Nov 2021 in cs.CV

Abstract: Semi-supervised video object segmentation (VOS) aims to segment a few moving objects in a video sequence, where these objects are specified by annotation of first frame. The optical flow has been considered in many existing semi-supervised VOS methods to improve the segmentation accuracy. However, the optical flow-based semi-supervised VOS methods cannot run in real time due to high complexity of optical flow estimation. A FAMINet, which consists of a feature extraction network (F), an appearance network (A), a motion network (M), and an integration network (I), is proposed in this study to address the abovementioned problem. The appearance network outputs an initial segmentation result based on static appearances of objects. The motion network estimates the optical flow via very few parameters, which are optimized rapidly by an online memorizing algorithm named relaxed steepest descent. The integration network refines the initial segmentation result using the optical flow. Extensive experiments demonstrate that the FAMINet outperforms other state-of-the-art semi-supervised VOS methods on the DAVIS and YouTube-VOS benchmarks, and it achieves a good trade-off between accuracy and efficiency. Our code is available at https://github.com/liuziyang123/FAMINet.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ziyang Liu (26 papers)
  2. Jingmeng Liu (2 papers)
  3. Weihai Chen (29 papers)
  4. Xingming Wu (20 papers)
  5. Zhengguo Li (41 papers)
Citations (8)