Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Clustering with Discounts (2111.09505v1)

Published 18 Nov 2021 in cs.DS

Abstract: We study the $k$-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most $k$ facilities. The goal is to minimize the sum of distances from each client to its nearest open facility which is discounted by its own discount value, with minimum contribution being zero. $k$-median with discounts unifies many classic clustering problems, e.g., $k$-center, $k$-median, $k$-facility $l$-centrum, etc. We obtain a bi-criteria constant-factor approximation using an iterative LP rounding algorithm. Our result improves the previously best approximation guarantee for $k$-median with discounts [Ganesh et al., ICALP'21]. We also devise bi-criteria constant-factor approximation algorithms for the matroid and knapsack versions of median clustering with discounts.

Citations (2)

Summary

We haven't generated a summary for this paper yet.