Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-dimensional soliton generation, stability and excitations of the PT-symmetric nonlinear Schrödinger equations (2111.09482v1)

Published 18 Nov 2021 in nlin.PS, math.AP, physics.comp-ph, and quant-ph

Abstract: We study a class of physically intriguing PT-symmetric generalized Scarf-II (GS-II) potentials, which can support exact solitons in one- and multi-dimensional nonlinear Schr\"odinger equation. In the 1D and multi-D settings, we find that a properly adjusted localization parameter may support fully real energy spectra. Also, continuous families of fundamental and higher-order solitons are produced. The fundamental states are shown to be stable, while the higher-order ones, including 1D multimodal solitons, 2D solitons, and 3D light bullets, are unstable. Further, we find that the stable solitons can always propagate, in a robust form, remaining trapped in slowly moving potential wells of the GS-II type, which opens the way for manipulations of optical solitons. Solitons may also be transformed into stable forms by means of adibatic variation of potential parameters. Finally, an alternative type of n-dimensional PT-symmetric GS-II potentials is reported too. These results will be useful to further explore the higher-dimensional PT-symmetric solitons and to design the relative physical experiments.

Summary

We haven't generated a summary for this paper yet.