Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracklet-Switch Adversarial Attack against Pedestrian Multi-Object Tracking Trackers (2111.08954v3)

Published 17 Nov 2021 in cs.CV

Abstract: Multi-Object Tracking (MOT) has achieved aggressive progress and derived many excellent deep learning trackers. Meanwhile, most deep learning models are known to be vulnerable to adversarial examples that are crafted with small perturbations but could mislead the model prediction. In this work, we observe that the robustness on the MOT trackers is rarely studied, and it is challenging to attack the MOT system since its mature association algorithms are designed to be robust against errors during the tracking. To this end, we analyze the vulnerability of popular MOT trackers and propose a novel adversarial attack method called Tracklet-Switch (TraSw) against the complete tracking pipeline of MOT. The proposed TraSw can fool the advanced deep pedestrian trackers (i.e., FairMOT and ByteTrack), causing them fail to track the targets in the subsequent frames by perturbing very few frames. Experiments on the MOT-Challenge datasets (i.e., 2DMOT15, MOT17, and MOT20) show that TraSw can achieve an extraordinarily high success attack rate of over 95% by attacking only four frames on average. To our knowledge, this is the first work on the adversarial attack against the pedestrian MOT trackers. Code is available at https://github.com/JHL-HUST/TraSw .

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com