Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Tradeoffs in Robust State Estimation (2111.08864v3)

Published 17 Nov 2021 in eess.SY and cs.SY

Abstract: Adversarially robust training has been shown to reduce the susceptibility of learned models to targeted input data perturbations. However, it has also been observed that such adversarially robust models suffer a degradation in accuracy when applied to unperturbed data sets, leading to a robustness-accuracy tradeoff. Inspired by recent progress in the adversarial machine learning literature which characterize such tradeoffs in simple settings, we develop tools to quantitatively study the performance-robustness tradeoff between nominal and robust state estimation. In particular, we define and analyze a novel $\textit{adversarially robust Kalman Filtering problem}$. We show that in contrast to most problem instances in adversarial machine learning, we can precisely derive the adversarial perturbation in the Kalman Filtering setting. We provide an algorithm to find this perturbation given data realizations, and develop upper and lower bounds on the adversarial state estimation error in terms of the standard (non-adversarial) estimation error and the spectral properties of the resulting observer. Through these results, we show a natural connection between a filter's robustness to adversarial perturbation and underlying control theoretic properties of the system being observed, namely the spectral properties of its observability gramian.

Citations (2)

Summary

We haven't generated a summary for this paper yet.