Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Provably Robust Motion Planners Using Funnel Libraries (2111.08733v1)

Published 16 Nov 2021 in cs.RO, cs.LG, cs.SY, and eess.SY

Abstract: This paper presents an approach for learning motion planners that are accompanied with probabilistic guarantees of success on new environments that hold uniformly for any disturbance to the robot's dynamics within an admissible set. We achieve this by bringing together tools from generalization theory and robust control. First, we curate a library of motion primitives where the robustness of each primitive is characterized by an over-approximation of the forward reachable set, i.e., a "funnel". Then, we optimize probably approximately correct (PAC)-Bayes generalization bounds for training our planner to compose these primitives such that the entire funnels respect the problem specification. We demonstrate the ability of our approach to provide strong guarantees on two simulated examples: (i) navigation of an autonomous vehicle under external disturbances on a five-lane highway with multiple vehicles, and (ii) navigation of a drone across an obstacle field in the presence of wind disturbances.

Citations (2)

Summary

We haven't generated a summary for this paper yet.