Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal policy ranking (2111.08415v1)

Published 16 Nov 2021 in cs.AI and cs.LG

Abstract: Policies trained via reinforcement learning (RL) are often very complex even for simple tasks. In an episode with $n$ time steps, a policy will make $n$ decisions on actions to take, many of which may appear non-intuitive to the observer. Moreover, it is not clear which of these decisions directly contribute towards achieving the reward and how significant is their contribution. Given a trained policy, we propose a black-box method based on counterfactual reasoning that estimates the causal effect that these decisions have on reward attainment and ranks the decisions according to this estimate. In this preliminary work, we compare our measure against an alternative, non-causal, ranking procedure, highlight the benefits of causality-based policy ranking, and discuss potential future work integrating causal algorithms into the interpretation of RL agent policies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.