Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accounting for Gaussian Process Imprecision in Bayesian Optimization (2111.08299v1)

Published 16 Nov 2021 in cs.AI and stat.ME

Abstract: Bayesian optimization (BO) with Gaussian processes (GP) as surrogate models is widely used to optimize analytically unknown and expensive-to-evaluate functions. In this paper, we propose Prior-mean-RObust Bayesian Optimization (PROBO) that outperforms classical BO on specific problems. First, we study the effect of the Gaussian processes' prior specifications on classical BO's convergence. We find the prior's mean parameters to have the highest influence on convergence among all prior components. In response to this result, we introduce PROBO as a generalization of BO that aims at rendering the method more robust towards prior mean parameter misspecification. This is achieved by explicitly accounting for GP imprecision via a prior near-ignorance model. At the heart of this is a novel acquisition function, the generalized lower confidence bound (GLCB). We test our approach against classical BO on a real-world problem from material science and observe PROBO to converge faster. Further experiments on multimodal and wiggly target functions confirm the superiority of our method.

Citations (12)

Summary

We haven't generated a summary for this paper yet.