Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wyner-Ziv Gradient Compression for Federated Learning (2111.08277v1)

Published 16 Nov 2021 in cs.LG

Abstract: Due to limited communication resources at the client and a massive number of model parameters, large-scale distributed learning tasks suffer from communication bottleneck. Gradient compression is an effective method to reduce communication load by transmitting compressed gradients. Motivated by the fact that in the scenario of stochastic gradients descent, gradients between adjacent rounds may have a high correlation since they wish to learn the same model, this paper proposes a practical gradient compression scheme for federated learning, which uses historical gradients to compress gradients and is based on Wyner-Ziv coding but without any probabilistic assumption. We also implement our gradient quantization method on the real dataset, and the performance of our method is better than the previous schemes.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com