Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarially Constructed Evaluation Sets Are More Challenging, but May Not Be Fair (2111.08181v1)

Published 16 Nov 2021 in cs.CL

Abstract: More capable LLMs increasingly saturate existing task benchmarks, in some cases outperforming humans. This has left little headroom with which to measure further progress. Adversarial dataset creation has been proposed as a strategy to construct more challenging datasets, and two common approaches are: (1) filtering out easy examples and (2) model-in-the-loop data collection. In this work, we study the impact of applying each approach to create more challenging evaluation datasets. We adapt the AFLite algorithm to filter evaluation data, and run experiments against 18 different adversary models. We find that AFLite indeed selects more challenging examples, lowering the performance of evaluated models more as stronger adversary models are used. However, the resulting ranking of models can also be unstable and highly sensitive to the choice of adversary model used. Moreover, AFLite oversamples examples with low annotator agreement, meaning that model comparisons hinge on the most contentiously labeled examples. Smaller-scale experiments on the adversarially collected datasets ANLI and AdversarialQA show similar findings, broadly lowering performance with stronger adversaries while disproportionately affecting the adversary model.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com