Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monotone Inclusions, Acceleration and Closed-Loop Control (2111.08093v4)

Published 15 Nov 2021 in math.OC and cs.DS

Abstract: We propose and analyze a new dynamical system with a closed-loop control law in a Hilbert space $\mathcal{H}$, aiming to shed light on the acceleration phenomenon for \textit{monotone inclusion} problems, which unifies a broad class of optimization, saddle point and variational inequality (VI) problems under a single framework. Given $A: \mathcal{H} \rightrightarrows \mathcal{H}$ that is maximal monotone, we propose a closed-loop control system that is governed by the operator $I - (I + \lambda(t)A){-1}$, where a feedback law $\lambda(\cdot)$ is tuned by the resolution of the algebraic equation $\lambda(t)|(I + \lambda(t)A){-1}x(t) - x(t)|{p-1} = \theta$ for some $\theta > 0$. Our first contribution is to prove the existence and uniqueness of a global solution via the Cauchy-Lipschitz theorem. We present a simple Lyapunov function for establishing the weak convergence of trajectories via the Opial lemma and strong convergence results under additional conditions. We then prove a global ergodic convergence rate of $O(t{-(p+1)/2})$ in terms of a gap function and a global pointwise convergence rate of $O(t{-p/2})$ in terms of a residue function. Local linear convergence is established in terms of a distance function under an error bound condition. Further, we provide an algorithmic framework based on the implicit discretization of our system in a Euclidean setting, generalizing the large-step HPE framework. Although the discrete-time analysis is a simplification and generalization of existing analyses for a bounded domain, it is largely motivated by the above continuous-time analysis, illustrating the fundamental role that the closed-loop control plays in acceleration in monotone inclusion. A highlight of our analysis is a new result concerning $p{th}$-order tensor algorithms for monotone inclusion problems, complementing the recent analysis for saddle point and VI problems.

Citations (13)

Summary

We haven't generated a summary for this paper yet.